
EFI/UEFI Programming with UASM 2.50+

UASM v2.50 includes several updates to support interface-based calling against non-COM or OO

structures. Making use of these features a large portion of the UEFI core headers have been ported to

work with UASM.

This guide serves as a quick introduction on how to get started working with UEFI from Assembly

Language and specifically UASM.

Setting up a Virtual Machine

For testing and development purposes I recommend installing the latest version of Oracle Virtual Box

(6.0). This will give you a Virtual Machine that you can boot to test your UEFI application, driver or OS.

https://www.virtualbox.org/wiki/Downloads

To keep the configuration simple, we will use a USB flash drive rather than configure a UEFI bootable

VDI for Virtual Box. This has the benefit of not only being much easier to setup, but you can test the

USB stick on real machines too.

Get the UEFI EDK2 SDK and Tools

Once you have Virtual Box up and running with a new VM, you’ll want to download a copy of the

EDK (UEFI development kit). I would recommend using a stable release from:

https://github.com/tianocore/tianocore.github.io/wiki/EDK-II

All the latest UEFI specifications and tools are available from:

https://uefi.org/specsandtesttools

You will also want the FWIMAGE utility from the EFI Toolkit (It has been discontinued but the

application is still valid and available).

https://github.com/tianocore/tianocore.github.io/wiki/EFI-Toolkit

Once extracted the utility can be found at:

\EFI_Toolkit_2.0.0.1\EFI_Toolkit_2.0\build\tools\bin

It is used to modify a normal PE32+ DLL/EXE to have the correct EFI subsystem type:

D:\UEFI\EFI_Toolkit_2.0.0.1\EFI_Toolkit_2.0\build\tools\bin\fwimage app uefi.dll app.EFI

and will form part of your build script later.

Prepare the USB Flash Driver

Format the USB Flash drive as FAT32. Create a folder structure \EFI\BOOT\ on the driver. This is the

default location for the firmware to look for the initial EFI application to load. The application /

depending on your architecture will be named something like BOOTX64.EFI. For our example we will

assume a 64bit UEFI PC and use the above name.

The UEFI EDK includes an EFI Shell application, we will make this the default application to load

when the USB stick is booted.

Copy the file from your UEFI installation \UEFI\ShellBinPkg\ShellBinPkg\UefiShell\X64\Shell.efi

To the /EFI/BOOT/ folder you created earlier on the USB stick. Rename the file to BOOTX64.EFI.

Configure the VM

Ensure that the VM is configured as 64bit other:

Ensure the VM is configured to use EFI:

Setup USB pass-through to share the real USB stick with the VM:

The UASM UEFI Includes

The entire UEFI core is made available via a single efi.inc include file.

This file includes all the structures, equates and types defined in the UEFI core includes as well as the

majority of Protocols and GUIDs. For details on the protocols and features please refer to the UEFI

Specification which includes detailed coverage of how the protocols are located, used as well as full

method and data type descriptions.

In addition a efiUtil.inc file is provider with several helper functions for some common UEFI

operations. These functions are available as regular procedure calls or through a similar pointer

based interface as the core UEFI functions:

RAWINTERFACE iEFIUtil

 STDFUNC PrintMemoryDescriptor, <voidarg>, pConsole:PCONOUT, pDescriptor:PTR
EFI_MEMORY_DESCRIPTOR

 STDFUNC PrintGraphicsModeInfo, <voidarg>, pConsole:PCONOUT, ModeNumber:DWORD, pGfxMode:PTR
EFIGraphicsMode, showHeader:BOOLEAN

 STDFUNC CompareGUID, <voidarg>, guidA:PTR, guidB:PTR

ENDRAWINTERFACE

PEFIUtil TYPEDEF PTR iEFIUtil

Evolution of Calls

In a primitive assembler, assuming the UEFI structures had been provided, and as many online

examples might show to make an ABI compliant FASTCALL from assembly language would require

code similar to:

;===
; The normal ASM way to make a 64bit FASTCALL.

;===

 sub rsp,20h
 lea rdx,HelloMsg

 mov rcx,SystemTablePtr

 mov rcx,[rcx + EFI_SYSTEM_TABLE_CONOUT]

 call qword ptr [rcx + EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL_OUTPUTSTRING]

 add rsp,20h

But we can do much better than that!

By using INVOKE syntax and the fact that UASM support built in UNICODE string literals:

;===

; The smarter UASM way...

;===
 mov rcx,SystemTablePtr

 mov rax,[rcx].EFI_SYSTEM_TABLE.ConIn

 mov pConsoleIn,rax
 mov rax,[rcx].EFI_SYSTEM_TABLE.ConOut

 mov pConsole,rax

 invoke [rax].ConOut.OutputString, pConsole, L"Hello Smarter UEFI World!\r\n"

 ; Or if you have a list of calls to make against the same protocol/interface

 ASSUME rcx:PTR ConOut

 mov rcx,pConsole
 invoke [rcx].OutputString, pConsole, ADDR HelloMsg

 ASSUME rcx:NOTHING

Now making use of UASM 2.50+ enhanced interface calling and the types that have been provided

by the include file:

;===

; The even smarter ways...

;===

 pConsole->OutputString(pConsole, L"Testing\r\n")
 ; or

 mov rax,pConsole

 [rax].ConOut->OutputString(pConsole, L"Testing2\r\n")

 pConsole->ClearScreen(pConsole)

Hello World UEFI!

Using some of the available features from UEFI we can now setup a minimal hello world UEFI

example source:

.x64p

OPTION WIN64:15

OPTION STACKBASE:RSP
OPTION LITERALS:ON

OPTION ARCH:AVX

OPTION CASEMAP:NONE

include efi.inc

.data

Handle EFI_HANDLE 0

SystemTablePtr dq 0
HelloMsg dw 'Hello UEFI World!',13,10,0

pConsole PCONOUT 0

pConsoleIn PCONIN 0
pBootServices P_BOOT_SERVICES 0

pRuntimeServices P_RUNTIME_SERVICES 0

mapSize UINTN 512*SIZEOF(EFI_MEMORY_DESCRIPTOR)

descriptors EFI_MEMORY_DESCRIPTOR 512 DUP (<?>)

mapKey UINTN 0
descSize UINTN 0

descVer UINT32 0

include efiUtil.inc

.code

Main PROC FRAME imageHandle:EFI_HANDLE, SystemTable:PTR_EFI_SYSTEM_TABLE

 mov Handle,rcx
 mov SystemTablePtr,rdx

;===

; The normal ASM way to make a 64bit FASTCALL.
;===

 sub rsp,20h

 lea rdx,HelloMsg
 mov rcx,SystemTablePtr

 mov rcx,[rcx + EFI_SYSTEM_TABLE_CONOUT]

 call qword ptr [rcx + EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL_OUTPUTSTRING]
 add rsp,20h

;===
; The smarter UASM way...

;===

mov rcx,SystemTablePtr

 mov rax,[rcx].EFI_SYSTEM_TABLE.ConIn
 mov pConsoleIn,rax

 mov rax,[rcx].EFI_SYSTEM_TABLE.ConOut

 mov pConsole,rax
 invoke [rax].ConOut.OutputString, pConsole, L"Hello Smarter UEFI World!\r\n"

 ; Or if you have a list of calls to make against the same protocol/interface
 ASSUME rcx:PTR ConOut

 mov rcx,pConsole

 invoke [rcx].OutputString, pConsole, ADDR HelloMsg
 ASSUME rcx:NOTHING

;===

; The even smarter ways...
;===

 pConsole->OutputString(pConsole, L"Testing\r\n")

 ; or
 mov rax,pConsole

 [rax].ConOut->OutputString(pConsole, L"Testing2\r\n")

 pConsole->ClearScreen(pConsole)

;===

; Store pointer to the BOOT SERVICES and RUNTIME SERVICES Interfaces
;===

 mov rax,SystemTablePtr

 mov rsi,[rax].EFI_SYSTEM_TABLE.RuntimeServices
 mov pRuntimeServices,rsi

 mov rsi,[rax].EFI_SYSTEM_TABLE.BootServices

 mov pBootServices,rsi

;===

; Get Memory Map
;===

 [rsi].BOOT_SERVICES->GetMemoryMap(&mapSize, &descriptors, &mapKey, &descSize,

&descVer)

 .if(rax != EFI_SUCCESS)
 pConsole->OutputString(pConsole, L"Failed to get memory map\r\n")

 pBootServices->Exit(Handle, EFI_ERROR, 36, L"Memory Map Error\r\n")

 .else
 lea rsi,descriptors

 mov rax,mapSize

 xor rdx,rdx
 idiv descSize

 mov r11,rax

 .for(r10=0 : r10 < r11 : r10++)

 pEFIUtil->PrintMemoryDescriptor(pConsole, rsi)
 add rsi,descSize

 .endfor

 .endif

 mov eax,EFI_SUCCESS

 pBootServices->Exit(Handle, EFI_SUCCESS, 10, L"Complete\r\n")

 ret

Main ENDP

END Main

An Example Build Script

uasm64 -c -win64 -Zp8 uefi.asm

link /dll /IGNORE:4086 uefi.obj

fwimage app uefi.dll app.EFI

copy app.EFI f:\EFI\BOOT\app.EFI

Running the Example

Once your VM boots you should be presented with the UEFI Shell. From the listed of available file

systems navigate to the USB stick, in our case this is fs1. The shell operates in a very similar fashion

to DOS or Windows shell. Execute the below steps replacing the volume as applicable:

fs1:

cd efi

cd boot

app.efi { > out.txt }

Which should give you and output like:

Next Steps

A good UEFI assembly language introduction can be found at:

http://x86asm.net/articles/uefi-programming-first-steps/index.html

However, with what we’ve shown above and the enhanced functionality available to UASM you can

leverage any C/C++ UEFI based tutorials with minimal to no translation required!

We have successfully tested and used a number of the core protocols already including networking,

GOP, File Systems, Pointers and Console input and output.

For a reference to all available UEFI Shell commands and options:

http://h17007.www1.hpe.com/docs/iss/proliant_uefi/UEFI_TM_030617/GUID-D7147C7F-2016-

0901-0A6D-000000000E1B.html

